OFS recently announced that it has improved several important optical and geometry specifications for its line of 50 µm multimode fibers, including the company's LaserWave FLEX bend-optimized fiber. The new, tighter specifications can reduce connector loss and improve link system performance in cabled fiber for demanding data center and enterprise applications, contends OFS.
The company says the enhancements can provide extra margin, or “headroom,” in 10, 40 and 100 Gb/s applications, enabling greater network design flexibility and reliability. For its line of 50 µm multimode fibers meeting the OM4, OM3 and OM2 standards, OFS has lowered its 850 nm attenuation specification from ≤ 2.3 dB/km to ≤ 2.2 dB/km, the lowest such spec in the industry, the company claims. This improvement will help fiber-optic cablers minimize attenuation in their cable and provide end users with low-loss links in their networks.
In addition, OFS says it has improved several key geometry specifications in its 50 micron multimode fibers to industry-leading levels. Clad diameter tolerance has been tightened from 125.0 ± 1.0 µm to 125.0 ± 0.8 µm, while clad non-circularity has been improved from 1% to 0.7%. Combined with a numerical aperture tolerance that has been tightened from 0.200 ± 0.015 to 0.200 ± 0.010, these improved specifications allow for better core-to-core alignment and light-coupling efficiency in connectors and splices, thereby helping to reduce the loss at these connections.
Modeling of simulated connections conducted by OFS indicates that the tighter specifications can result in connection loss improvement approaching 0.1 dB per connection. In a common worst-case, 4-connection link, this would result in an improvement of nearly 0.5 dB, a significant improvement in light of the fact that total multimode loss budgets are shrinking below 2.0 dB for 40 and 100 Gb/s speeds.
OFS reports that it is able to realize these improvements through the use of its patented Modified Chemical Vapor Deposition (MCVD) fiber manufacturing process. This process is optimally suited for creating the precision refractive index profiles required for today's high performance laser-optimized multimode fiber, such as the LaserWave FLEX OM4/OM3 fibers, capable of transmitting to distances of 550 meters at 10 Gb/s, and 150 meters at 40 and 100 Gb/s.
See also: Bend-optimized multimode fiber’s halo effect explained